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ABSTRACT 

In this note It Is shown that a two-stage stochastic program with 

recourse with right-hand sides random (I.e., a two-stage programming under 

uncertainty problem) has optimal decision rules which are continuous and 

pieoewise linear.    However, this result does not extend to programs with 

three or more stages.    An example Is given of a simple Inventory-type 

three-stage stochastic program with recourse for which the optimal 

second-stage decision rule Is not plecewlse linear.    The example Is 

also recast In the framework of the conditional probability E-model of 

chance-constrained programming showing that the Chames-Klrby theorem 

on the existence of plecewlse linear decision rules for such programs 

Is Invalid for moie than two stages. 
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A NOTE ON DECISION RULES FOR STOCHASTIC PROGRAMS 

In this note It will be shown that»  In a sense to be made precise, 

a two-stage stochastic program with recourse with right-hand sides 

random (I.e., a two-stage programming under uncertainty problem) has 

optimal decision rules which are aontinuoue and pieoewise linear.    The 

proof relies on a basic property of linear programs established In  [9].    How- 

ever,  this  result does not extend to stochastic programs with three or more 

stages.    An example will be given of a simple Inventory-type three-stage 

stochastic program with recourse for which the optimal second-stage 

decision rule Is not plecewlse linear.    The example Is then recast In the 

framework of the conditional probability E-model of chance-constrained 

programming given by Charnes and Klrby in  [1], showing that the central 

theorem of  [1],   [4],  and [5]  on the existence of plecewlse linear decision 

rules for such programs is Invalid for more  than two stages.    The example 

may also be of value to the reader as an Illustration of certain concepts 

In the theory of stochastic programs with recourse. 

Consider the two-stage stochastic program with recourse with right-hand 

sides random: 

(1) inf ex + E {min      qy} 
x y 

Ax - b 

Tx + Wy -  ^ 

x > 0 y > 0 
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where    c,  q, A, b, T,    and    W    are fixed matrices of size    1 x n, 

1 x n, m x n, m x 1, m x n,  and    m x n    respectively and    ^    is a random 

column m-vector with known distribution.    The support    It   of the random 

vector    £    is defined to be the smallest closed set of values of    C    with 

probability measure    1.    This special case of stochastic programs with 

recourse is essentially the programming under uncertainty model which is 

studied in  [3],  [11]» etc. and out of which the study of stochastic 

programs with recourse grew.    Of course as it stands (1)  is just a 

notational abbreviation.    A detailed explanation of (1) may be found in 

[11];  a similar explicit formulation for the general stochastic program 

with recourse, in which the components of    C    include elements of c, q, 

T, and W    as well as the right-hand sides, may be found in  [6].    The 

pertinent concepts and results from [6] and [11] are outlined in the 

following paragraph. 

For every pair of values of  the vectors    x    and    C >     Q(x,0    is 

defined to be the optimal value of the eeaond-etage program 

(2) min qy 
y 

Wy - 5 - Tx 

y  > 0 

where it is understood that Q(x,0 is +« or -« if (2) is infeasible 

or feasible and unbounded below. The usual definition of integration is 

extended in [6] to encompass the cases of divergence and infinite integrand. 

Thus Q(x) ■ E Q(x,£;)» the expected value of Q(x,0, can be unambiguously 

defined for all x.  It is shown in [8] that with this definition of ex- 

pected value and the appropriate definition of convexity for functions 

tummmmmmmmumt 
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Into the extended reals    Q(x)    Is a lower semicontinuous  convex function. 

Thus (1) has an equivalent convex program 

(3) inf ex + Q(x) 
X 

Ax - b 

x > 0 

where, of course,    Q(x)    may be infinite for certain values of    x.      A 

vector    x    Is said to be (strongly) feasible for (1), or equlvalently 

(3), If It satisfies  the linear constraints    Ax = b, x > 0    and if 

Q(x)  < -H».      If the inflmum in (1), i.e.,  in (3), is finite and achieved 

for some vector    x,    then    x    is said to be optimal. 

The major positive result of this note is  the following: 

THEOREM. If a two-stage stochastic program with recourse with 

right-hand sides  random (1) has a feasible solution    x0    yielding a 

finite value of the objective, in particular if    x0    is an optimal 

solution,   then there exists a continuous plecewlse linear vector-valued 

function    y^O    defined on a polyhedral region    Z(x0)    containing the 

support    5    of the random variable    4    such that for all    C    in    Z(xu), 

and hence for all    £    in    E,    y0(C)    is a finite optimal solution to  the 

second-stage program (2)  given    x ■ x0. 

Proof.        Let    pos W   denote the closed convex polyhedral cone with 

apex at the origin consisting of all column n-vectors which can be written 

as a nonnegative weighted sum of columns  of    W,  i.e.,    pos W = {t|t ■ Wy, 

y - 0}.    The second-stage program (2)  is feasible for given    x    and    C 

If and only if    £    lies in the translated cone    I(x)  = pos W - Tx.       Since 
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x0    Is  feasible, we have    Q(x0) - E QCx0,^)  < -t«.      From the definition 

of expectation given in [6]  it follows that    Q(x0,O    must be less  than 

■H»    with probability 1,  i.e.,    Z(x0)    must have measure 1.    But    Z:(x0) 

is closed and    E    is  the smallest closed set of measure 1, hence 

L (x0) D E,      Now if the second-stage program (2)   is unbounded for one 

feasible right-hand side,  it is unbounded for all feasible right-hand 

sides.    That is, if    Q(x0,O  - -«    for some    C.     then    Q(x0,O  - -ao    for 

all    C    in    I(x0).      But if    Q(x0,O - -»    for all    E,    in   Z(x0),    then, 

by the definition of    E,    Q(x0) - E Q(x0,C) - -".       Since    x0    yields a 

finite value of the objective in (3), it follows that the secoud-stage 

program (2) has a (finite)   optimal solution    y(0     for    x = x0    and all 

5    in    J:(x0),      Up to this point,  the proof of the theorem is 

essentially a review of some of the results of  [6]  and  [11]. 

We may now apply the Basis Decomposition Theorem of  [91  to conclude that 

the optimal solution    y0(C)    may be chosen for each    C    in    ECx0)     in 

such a way that    y®{')    is  continuous and piecewise linear on    2(x0). 

In view of this  theorem,  it is natural to ask if programs of more 

than two stages also have piecewise linear optimal decision rules.    They 

do not in general,  as  the following example will show.    Consider the 

three-stage stochastic program with recourse: 

(4) min        0.6x + E    min    (tyj + 0y2 + E.   >   v{min    Zj + z2} 
x y ^1^'     z 

x < 2 

-x + yi + ya - £ 

yi + zi - ^ 

y2 
+ z2     - h 

x,y1,y2,z1,z2 > 0 

 imr-nnnii-Miiiirifiiii 



-5- 

where    £,  i;  ,  and    ;      are Independent  random variables,    £    Is uniformly 

distributed on    [0,2],    ^    is uniformly distributed on    [0,1],    and    ; 

is triangularly distributed ci    [0,1],  i.e.,    PU  <A)  - A2.       This three-stage 

program may be interpreted as an inventory problem.    An amount    x    of an 

infinitely divisible commodity may be purchased at a price of 0.6 per 

unit.    An additional amount    (,    is  then received at no cost,  and amounts 

y,    and    y2    of the total are sent to two distribution facilities.    If 

either of the demands    ^1    and    ^    exceeds the supply at the corresponding 

facility,  the deficiency is made up at a cost of 1 per unit.    Notice that 

this program has the property of complete recourse as described in [3], 

that is,  the second stage is always feasible for any choice of    x   satis- 

fying the first-stage constraints and any value of    5,    and the third 

stage is always feasible for any feasible choice of    y.    and    y?    and any 

values of    £,     and    ;  . 

Rewriting the constraints in equality form with slack variables 

s,    and    s-,    the third-stage program is 

Q2(y,;)  = min      z1 + z2 
z,s 

-8i     - ^i - ^i 

-s2 - c2 - y2 

This is a case of simple recourse as considered in [10]. By the well 

known separability property of such problems, 

Q,(y) = ErQ?(y,0 - 

V*(y^) +V^'^' 
where 
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E    Q'^.^) 
1 

-Q^y,) 

(5) 

E, Q"^.^) qycy,) - 

-y1+f     if yl 1 o 

i(y1-l)2     If    0   <yl   <   1 

0 if    1 < y1 

-^2. + 3 if y2 1 o 

i y| - y2 + f   if   o < y2 < i 

o if   i i y. 

Fig»    1    includes a plot of selected level curves for   Q2(y1,y2). 

Fig.  1 
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The equivalent second-stage program is 

(6) Q^x.O - min       0y1    +   0y2 + Q^.y,,) 
y 

y1   +    y2 < C + x 

y1 > 0, y2 > 0. 

From an examination of Figure  1 it is not difficult to see  that for each 

value  of    t ■ C + x    in the interval    [0,2]    the optimal solution to (6) 

is unique and lies on a curve    C.    When    t - 5 + x   is greater than 2 

the optimal solution is not unique; if a specific solution were desired, 

a natural choice would be    Yi  " y? " ^      W:Lth a ü"16 straightforward 

analysis it can be shown that  the optimal solution   (yJU+x) ,y°U+x)j 

for    0<? + x<2    is given by 

yl 
,..  v      ~1 +Vl + 4(C+x) 
(C+x) -  ^—"—<- 

(7) 

yOCC+x) - 5 + x - y°a+x). 

Thus    C    is the parabola y,  m y\- 

The equivalent first-stage program is 

min        z(x) - 0.6x + Q.Cx) 
x 

0 < x < 2 

where 

(8) 

']     Q2(y;(t),yOct))f dt 
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As has been observed in [3] the objective z(?0 is necessarily convex; 

however, this can be verified directly. For values of t greater than 

2 the integrand in (8) is zero. Hence the upper limit may be replaced 

by 2 and 

(9) ^   z(x) - 0.6 -| Q2(y°(x),y2
0(x)) 

From Fig,   1 it can be seen that the right-hand side of (9)  is increasing 

in    x,    so that    z(x)    is  indeed convex.    With a little labor the integral 

(8) may be evaluated in closed form, but this is not essential to the 

solution of the program. 

On substituting    x ■ 0    into the right-hand side of (9)  and making 

use of (5)  and (7)   it will be found that the derivative of    2(x)    at 

x ■ 0    is strictly positive.    It follows  that    x0 « 0    is the unique 

optimal first-stage decision for the stochastic program (4).    The optimal 

second-stage decision as  a function of the observed second-stage random 

variable    C    is obtained by setting    x » 0    in  (7).      Since the optimal 

second-stage decision is unique for    £    in the interval    [0,2],    and 

since the random variable    £    is distributed continuously over this 

interval,  it follows that any piecewise linear substitute for the optimal 

decision rules would be nonoptimal with probability 1 and lead to a value 

of the objective of the stochastic program (4)  strictly less  than optimal. 

Finally, consider the following variant of  (4): 

mmmmmm ™mmmmt&*.mif*!t 
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(10) max     E(-0.6x 

PCbj  >    x)   > 0.9 

-  zl - z2) 

P(b^  > -x + yj  + y2   |   bj)   > 0.9 

P(b; ^        - y1  - y2   |  b^  > 0.9 

po>3 -    - y! 

PCb1'  > 

-  z. 1   b^b^.b1')   > 0.9 

- y2 - z2 I b1,b2,b2) > 0.9 

x»  yl'  y2,   Zl,   Z2  - 0 

where 

b1 = 5 + 1.8 

b' - C + ^ - 0.1 bj"-^ + n - 0.1 

b2 -  ^2 bj« ^2 + n - 0.1, 

C,   ^.j     and    £      are Independent random variables with  the distributions 

given in connection with  the recourse problem (A),    n    is a random variable 

independent of    C,  C,,      and     ^2,    with uniform distribution on    [0,1], 

and    P(b2 I  ...   | b )    denotes  conditional probability with respect to 

b  ,  etc.    It  can be seen immediately  that this program is a conditional 

probability E-model chance constrained program as defined by Charnes and 

Kirby in [1].    It is shown in  [1]  that essentially any such program is 

equivalent to another in which  the chance constraints are replaced by 

constraints involving the fractile points of the conditional distribution 

functions of the random variables.     It is easy to see1  that  the fractile 

form of the stochastic program with  chance constraints  (10)   is exactly the 

^The case of two-stage programs is  examined in detail in Section 5 of  [7]. 
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stochastic program with recourse (A) except for an additional constraint 

y, + y, i - v'oTl,    which arises from the second of the two second-stage 

constraints In (10).    Since the addition of this constraint clearly does 

not affect the form of the optimal decision rules  (7),  they are also 

optimal decision rules for (10).    This example shows that Theorem 2 of 

[1], which asserts  that the optimal decision rules are plecewlse linear, 

Is Invalid for more than two stages.    This same theorem has  also appeared 

In  [4]  and [5]  and Is relied upon In an essential fashion In the proof 

of Theorem 3 of  [2], which considers optimal decision rules  for the P-model 

of chance constrained programming.    Note that If the random variables are 

discretely distributed on a finite set these theorems are valid but  trivial, 

since any function defined on a finite subset of    R     has a plecewlse linear 

extension to    R . 
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